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Abstract

The analysis of large sums of data can be extremely dif-
ficult to perform if the data is not presented graphically. As
a result, many graphing techniques have been developed,
such as scatter plots, histograms. Generally, the main pur-
pose of graphically displaying data is to do one of two
things: First, to find the general average of where most
of the data lies. Second, to find the outliers, the data points
that are most distant from the others. Our visualization
will attempt to find both by using a multitude of common
graphing techniques to expand upon the traditional star
glyph and create a new way of graphing data. These tech-
niques include clustering, using color as identifiers, and
3D graphing capabilities to present more data that would
not be possible of being shown in a two dimensional envi-
ronment. We apply our techniques to compare several air
traffic trajectory predictors currently being analyzed by the
U.S. Federal Aviation Administration.
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1 Introduction

Representing data in different contexts can present
a whole new meaning to the way it is interpreted.
Many graphs have successfully been displayed in a two-
dimensional environment. However, these graphs are lim-
ited to the amount of data that can be displayed at one time
because of the constraints of physical viewing space a two-
dimensional graph has. By adding in an extra axis, there
are virtually infinitely many new ways to display data.

A star glyph is a multivariate graphing technique in
which each variable represents a ray, or ”spoke,” each of
which extends out via a connecting line from a common
origin with equal angular distance between each spoke.
The length of each line is proportional to the magnitude
of the variable compared to the maximum value of all the
variables [2]. Star glyphs are extremely effective at deter-
mining both where data begins to cluster and where the
outliers are. However, the downfall occurs when the data
set becomes increasingly large as the graph becomes over-
whelmingly cluttered.

Many statistical graphing techniques are available to
help overcome the clutter of large data sets. Scatter plots,
parallel coordinates, and star plots are all have done a
very good job at creating more modern techniques such
as GeoTime [5], Jigsaw [9], NetLens [10] Substrate De-
signer [15], and Dust & Magnet [3].

This paper discusses a new way of graphing to visualize
quantitative data in a three dimensional environment. We
take the basic concept of a star glyph, a figure with n rays,
where n is the dimensionality of the data set [17], and add
a second attribute to the end of the spoke represented in the
form of a sphere. By adding a third axis we overcome the
cluttering that occurs when grouping large data sets. The
result is a four dimensional multivariate plot, not limited
to a two dimensional plane, useful for comparing similar
grouped attributes across multiple data sets. As an exam-
ple, we apply these properties of an enhanced star glyph
to a visualization showing the accuracy of aircraft trajec-
tory predictions across multiple systems used in the U.S.
National Airspace System.

The rest of the paper is organized as follows. Our en-
hancements to the basic two dimensional star glyph are
described in Section 2. In Section 3 we present an appli-
cation of our techniques to air traffic data. Conclusion and
future work are discussed in Section 4.

2 Enhanced Star Glyph

In this section, we describe the concept of the enhanced
star glyph.

2.1 Basic Star Glyph

A very basic star glyph extending out from a common
origin in equal angular distances is presented in Figure 1.
A star glyph has two dimensions: a quantifiable dimension
and a categorical dimension. The quantifiable dimension
is a single value and the magnitude of this value is rep-
resented by the length of a spoke. The quantifiable value
is grouped by categorical data. For instance, suppose the
star glyph in Figure 1 is showing the average amount of
food daily a dog in a particular kennel will eat. Assume



the data is grouped by the breed of the dog and s4 repre-
sents all beagles, while s2 represents all St. Bernards. We
can easily see that, on average, a St. Bernard will consume
much more food than a beagle and all other types of dogs,
while a beagle will consume close to the least amount of
food. This graph allows us to recognize an outlier either
for exclusion, or for further analysis.

Figure 1: A Basic Star Glyph

2.2 An Additional Attribute

Our visualization has the feature of adding another at-
tribute to compare more data. This attribute can be any
arbitrary value represented in the form of sphere where the
radius of the sphere is proportional to the attribute’s value.

Consider the graph in Figure 2 representing the average
number of miles per day an athlete runs grouped by the
sport he or she plays. Let the size of the sphere represent
the average weight of the athletes. Now, assume that the
large green sphere to the bottom right represents American
football players while the bottom purple sphere represents
cross country runners. We can see that the cross country
runners, on average, run much longer than football play-
ers, however, football players are generally much heavier.

The addition of the sphere allows for more data to be
added to the graph without becoming overwhelming. Fur-
thermore, the color of the spheres can put the data in a par-
ticular category. For example, in Figure 2 the two blue
spheres on top and top-right represent lacrosse players.
The sphere at the top represents lacrosse players in the
fall, whereas the sphere on the top-right represents lacrosse
players in the spring. From this graph we can see that
lacrosse players run more in the spring since they are pre-
sumably better trained by that time.

Figure 2: A Star Glyph with Spheres

Table 1 shows what a sample data set for the previous
graph might look like.

Sport Miles | Weight | Color
American football 1.5 250 Green
Cross country 8 130 Purple
American soccer 4 160 Red
Swimming 0.5 140 Orange
Fall lacrosse 3 150 Blue
Spring lacrosse 5 150 Blue

Table 1: Data Chart for the Previous Graph

2.3 Clustered Mean Graph

By adding the spheres to represent another measure-
ment, we increase the clutter of a graph that has many
points. This creates a cluster graph as shown in Figure 3,
making it difficult to analyze the groups inside the clus-
ter, but easily identifying and analyzing the outliers of the
graph. In order to view these outliers we give an option of
graphing a clustered mean star glyph.

Wherever data is closely similar, the visualization clus-
ters that data into a ’blob” of spheres. It removes the labels
for clustered data and leaves the labels for the outliers.

The average data are always clustered in the center and
the outliers extend out in a position that represents their
absolute value from the average cluster.



Figure 3: A Clustered Star Glyph

We use the following algorithm to determine whether or
not data should be included in the cluster.

Algorithm Clustering

Input: An input file containing the data points of
the nodes.

Output: A graph with nodes. Nodes in the graph
are clustered if they are close to the average of
the data points. Nodes that are not clustered
are the outliers and their positions are the ab-
solute values from the average of the nodes.

for each node in list_of _nodes
calculate the avg of all the nodes
for each node in list_of _nodes
if node is close to avg then
add node to cluster

end Algorithm.

Clustering data is increasingly more important in analy-
sis especially in a topic such as data mining. By abstracting
the details of the average, an analyst can focus only on the
outliers. In data mining, an outlier could be a group of
people that has not been marketed to or fraudulent data in
a company’s budget.

2.4 Comparison of Multiple Star Glyphs

Finally, we add the last dimension of our visualization.
A single star glyph exists on a single two dimensional
plane, therefore, since this is a three dimensional graph, we
have the third dimension to display multiple star glyphs.
This allows us to compare several results to each other.

For instance, consider that Figure 4 represents surveys
taken by several different news agencies on which of six
different companies produces the best ice cream. The dis-
tance of the spokes represents the average score of the ice
cream producer (from 0 to 5, 5 being best), while the size of
the sphere represents the amount of sales that producer had
last year. Each separate glyph represents a separate survey.
By displaying the three different surveys in same visualiza-
tion, we can determine, among other things, which survey
was more biased toward a particular producer.

&

Figure 4: Multiple Star Glyphs

2.5 User Interaction

Allowing the user to easily navigate the scene to focus
on points of interest would give him invaluable insight into
the information presented. One basic interaction is the abil-
ity to rotate the star glyphs in any direction, allowing the
user to get the perspective he desires (see Figure 5), and
to move about the visualization to find the exact camera
position required for analysis of a focal point.



Figure 5: Multiple Star Glyphs at a Different Angle

Another interaction detail is allowing the user to ma-
nipulate the scale of the plot along each axis. This in-
cludes moving the planar star glyphs closer together for
a more clustered appearance, or spreading them out more
(see Figure 6). Grouping the data in this way visually dis-
plays where data begins to cluster across the multiple data
sets. This helps analysts discover which of the outliers of
the data set are more distant from the other outliers.

e

Figure 6: Grouped Data Sets

Another necessity is the ability to change the scales of
both the spokes and the spheres. This can make a point of
interest less cluttered or easier to distinguish.

In many visualizations, labeling of nodes can cause
cluttering and are often indistinguishable from each other.
Giving the user the ability to display and hide labels of
his choosing is a necessary provision. Each spoke, sphere,
and planar glyph has its own label and, often, have many
more details that are too much to display in the visualiza-
tion. For instance, each sphere may be labeled with what
category it represents, but the user may be interested in the
exact value the size of the sphere represents. By clicking
on that particular sphere, detailed information about that
category will be displayed, separate from the visualization.
Using this feature, the user can view specific details for
focal points to compare and analyze.

3 Application

We have implemented our visualization techniques in
Java using JOGL, OpenGL bindings, to generate the 3D
graphics. In this section we present an application of our
visualization.

3.1 Background

The U.S. Federal Aviation Administration (FAA) con-
stantly strives for a safer, more efficient National Airspace
System. It is predicted that by the year 2025, the current
air traffic in the National Airspace System will have tripled
what it is today. In order to handle this massive increase
in air traffic density, many projects are under development
as part of the FAA’s Next Generation Air Transportation
System [4]. In this system, the air traffic controllers will
use Decision Support Tools to assist them in managing air
traffic. An important element of these tools is a Trajectory
Predictor (TP).

A TP assists the air traffic controller, by generating tra-
jectories, four dimensional (latitude, longitude, altitude,
time) predictions of where the aircraft will fly some time
into the future. The trajectories are then processed by a
Conflict Probe to predict when aircraft will come into con-
flict (i.e. loss of minimum separation standard; aircraft be-
come too close together). A TP is not always accurate in
predicting the future flight paths based on an array of fac-
tors (lack of aircraft intent, weather, etc.) Moreover, the
accuracy of trajectories generated by a TP determines its
overall performance [7].

There are currently two major Air Traffic Control sys-
tems in which a TP is a defining element. The User Re-
quest Evaluation Tool (URET) is currently deployed in all
air traffic control facilities across the United States. Ex-
tensive research has been performed on URET in order to
validate its algorithms and evaluate its accuracy [1], [11].



This air traffic control system is sufficient for now, but
will quickly become out of date as air traffic increases.
The solution is a new system called En Route Automation
Modernization (ERAM). Currently being developed by the
Lockheed Martin Corporation, this Air Traffic Control sys-
tem will be the replacement for URET and will be more
powerful and more efficient. The accuracy of the TP in
ERAM has recently been analyzed and results are present
in [8]. Furthermore, the FAA has several in-house TPs used
for regression analysis and evaluation of ERAM as it is be-
ing developed.

One main part of regression analysis is the comparison
of a dataset to another reference dataset. The comparison
of TPs using an enhanced star glyph will allow analysts to
quickly visualize strengths and weaknesses in each. This
allows analysts and the ERAM developers to investigate
where ERAM needs improvement, where other TPs are
accurate, and how the current version of ERAM compares
to a previous version.

3.2 Trajectory Predictor Comparison

For our example, we compared six different TPs: two
major ones (ERAM and URET) as well as four different
FAA in-house TPs, those being Linear Predictor, Flight
Plan, Hybrid, and Hybrid Merge [6].

The TPs have a selection of algorithms that make pre-
dictions of aircraft based on a number of factors that can
include weather, air traffic, aircraft type, flight plans, etc.

Our visualization graphically displays four different
variable attributes for each TP. We will break down each
variable so the reader is fully aware of how we determine
the strengths and weaknesses of a TP [12].

e Look Ahead Times are the time intervals in the fu-
ture that a TP makes a prediction at. Generally, time
in the U.S. National Airspace System is measured in
seconds UTC that have past so far in a given day.
So 12:00AM (midnight) is considered O seconds,
whereas 12:00PM (noon) is considered 43,200 sec-
onds. A look ahead time is how many seconds into
the future a TP will predict the position of the air-
craft. There are six look ahead times, used in these
particular datasets: 0, 60, 300, 600, 900, and 1200
seconds. What this means is we have a total look
ahead time of 1200 seconds (20 minutes) and we an-
alyze the accuracy of that 1200 second look ahead
time at each listed time.

e Engine Types are large subsets that an aircraft falls
under. The groups are based on the aircraft’s engine
which determines many things concerning the trajec-
tory, including the top of ascent, speed, and distance

an aircraft can fly. There are three aircraft engine
types: Piston(P), Turbo Prop(T), and Jet(J) [14].

o Number of Measurements determine the amount of
data that is included in a subset. This can give an
idea of how many flights are in the subset, how often
a trajectory prediction was made, and even how long
the flights in that subset were in the air.

In Table 2 we see eight rows of data. The second
column refers to what type of aircraft it is. Here, J
stands for Jet, P for Piston, and not shown is T for
Turbo Prop. The last column is a list of look ahead
times for URET pertaining to each of those aircraft
types. The first column represents how many mea-
surements were taken for a certain aircraft type and
a certain look ahead time. For example, the first row
indicates that in the database there are 4,737 mea-
surements for jet aircraft types at a 0 seconds look
ahead time. Row eight shows that there are 102 mea-
surements for piston aircraft types at 60 seconds look
ahead time. There are fewer measurements because
there are less piston aircraft than jet aircraft in oper-

ation.
URET

Count | Engine Type | Look Ahead Time
4737 J 0
4640 J 60
4258 J 300
3779 J 600
3297 J 900
2819 J 1200
100 P 0
102 P 60

Table 2: Sample Data Set for URET

e Average Horizontal Error is a statistical measure-
ment used for comparing TPs. Horizontal error is the
horizontal distance in nautical miles from the pre-
dicted location of the aircraft to the actual position
of the aircraft at that predicted time. We take the
average of all these values grouped by a single look
ahead time and single engine type to generate one
value in nautical miles for each grouping.

Table 3 shows a selection of data for ERAM. The sec-
ond column shows how close, on average, the TP’s predic-
tion was to the actual value. A lower number indicates a
higher level of accuracy. The first row shows that ERAM
has made 202 predictions for aircrafts of piston type 600
seconds into the future. When those predictions are aver-
aged together, the final result is 10.33.



ERAM
Count | Avg. Horz. Error | Engine Type | Look Ahead Time
202 10.3289975 P 600
182 14.0510698 P 900
162 17.3151512 P 1200
354 .888160169 T 0
347 1.14047839 T 60
311 2.23915788 T 300
264 3.47411061 T 600
221 4.47824027 T 900
177 5.58823446 T 1200

Table 3: Sample Data Set for ERAM

The rest of the data shows that ERAM is better at pre-
dicting turbo prop aircraft than piston type aircraft. Also,
as one might suspect, as the look ahead time grows larger,
the average prediction becomes less accurate.

3.3 The Visualization

Finally, we can take all the data gathered for the six TPs
and graph it visually using the enhanced star glyph.

The visualization presented in Figure 7, shows a front
view of the TPs predictions at particular look ahead times
and for different types of aircraft. The spokes of the graphs
represent the average horizontal error. Each spoke is a TP’s
prediction at a particular look ahead time. The length of
the spoke is the average horizontal error of the prediction.
Spokes that extend further from the center indicate that the
TP did a poor job at making its prediction.

The color of the spokes tells what kind of aircraft type a
spoke is associated with. For this example, the pink color
is for jet planes, blue is for turbo prop, and green is for
piston.

Finally, the size of the spheres that extend off the spokes
relate to the number of measurements that have been taken.
Larger spheres signify more measurements. The pink
spokes at the bottom of the graph have much larger spheres
since jet planes are much more common than turbo prop or
piston aircraft.

In Figure 7, the spokes at the top of the graph corre-
spond to piston aircraft (the blue color is associated with
piston aircraft). This is the current focus of the graph (the
graph can easily be manipulated to focus on a different
type of aircraft). We find that ERAM (star glyph on the
far right) still needs work in predicting the positions of pis-
ton aircraft. This can be seen as the length of the spokes at
the top are much more distant from the center for ERAM
than the other TPs. Our visualization is confirmed when
we look at the compiled version of piston aircraft at a 1200
second look ahead time in the following data set.

In Table 4, we see a set of data for all the TPs for pis-
ton aircraft at a 1200 second look ahead time. ERAM’s
average horizontal error is 17.32 nautical miles away from
the actual value, which is much worse than the other TPs.
Being able to predict the position of aircraft as early as
possible is crucial in preventing aircraft from coming in
conflict.

TP Type | Count | Avg. Horz. Error
URET 74 5.64460946

Linear Predictor 172 12.9068221
Flight Plan 171 5.939322398
Hybrid 172 10.0111151

Hybrid Merge 171 6.7263614
ERAM 162 17.3151512

Table 4: Compiled Data Set

Analysts and developers can now use this information
to analyze, in further detail, the trajectories and determine
where in ERAM the algorithm for piston aircraft is causing
inaccurate predictions [13].

ERAM, however, is very accurate in its predictions of
Jet aircraft, as we can see by the pink spheres at the bot-
tom of Figure 7. This extreme difference in its accuracy
is most likely due to the developers focusing mainly on jet
aircraft for now, since jets are much more prevalent in the
U.S. National Airspace System.

4 Conclusion

In this paper we presented techniques to improve the ba-
sic star glyph. By adding a sphere at the end of each spoke
on the star glyph, another attribute could be graphed. The
color of the sphere also indicates a category that a piece
of data belongs to. Our clustering effect reduces the clut-
ter problem that the star glyph suffers from. Finally, by
arranging a set of star glyphs along a certain axis, a multi-
tude of data sets can be compared.
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Figure 7: Multiple Enhanced Star Glyphs of Six Trajectory Predictors

We tested our techniques on six trajectory predictors
currently being analyzed by the Federal Aviation Admin-
istration. We found that ERAM, the Air Traffic Control
system set to be deployed within the next few years, cur-
rently performs well on horizontal prediction accuracy for
jet and turboprop aircraft, but still needs work in predict-
ing the horizontal locations of piston aircraft. This find-
ing may indicate that ERAM needs to improve the perfor-
mance model of this type of aircraft.

The data needs to be analyzed deeper in order to find
the particular problem that is causing this. For this purpose
a planar plot of just the points of interest would be useful.
Our future work includes researching new ways to display
the detailed information of the particular points the user is
interested in investigating further.
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